
git/GitHub Introduction
Lei Ma, PhD
Informatics Group

Gregg Thomas, PhD
Informatics Group

We help FAS researchers with bioinformatic
analysis

ONE-ON-ONE
CONSULTS

ONGOING
COLLABORATIONS

BIOINFORMATICS
WORKSHOPS

informatics.fas.harvard.edu

Specialized Services

DATA CONCIERGE OFFICE HOURS NEWSLETTER

informatics.fas.harvard.edu

“Data available
upon request” is

no longer
acceptable,

shouldn’t it be
the same for

code? Don’t do this!

Your code is part
of your methods:
what you include

matters

“A differential abundance analysis was conducted using the Wilcoxon Rank
Sum Test…These analyses were performed using the R statistical program.”

“Maaslin2 (version 1.14.1) [32] was used for differential abundance
analysis on a rarefied dataset with TSS normalization, prevalence set to
15%, and cage household set as a random effect.”

Did they code their own or use a software?
 What parameters were given?
 What data cleaning was done beforehand?

 Software and version are listed and cited
 Parameters and data cleaning/normalization are listed
 Could recreate if we read the tutorial for Maaslin2, maybe

Not all parameters are listed, some are assumed
Takes a lot of effort to recreate

https://onlinelibrary.wiley.com/doi/10.1111/gbb.70012#gbb70012-bib-0032

Two types of
sharing code: for

reproduction and
for reuse

Link to paper by Alejandro Couce et al, Science 2024 “Changing fitness
effects of mutations through long-term bacterial evolution”

Link to paper by Cavalcante et al, IEEE 2024 “EURYALE: A versatile
Nextflow pipeline for taxonomic classification and functional
annotation of metagenomics data”

Code shared for reproduction

Code shared for reuse

https://www.science.org/doi/10.1126/science.add1417
http://doi.org/10.1109/CIBCB58642.2024.10702116

Feature GitHub GitHub Desktop

Type Local version control software Cloud-based hosting service Software to help manage GitHub
repositories with a user interface

Installation Downloaded and installed
locally

Web-based, no installation
needed Downloaded and installed locally

Cost Free and open-source Free and paid tiers available Free

Dependency Can work independently Requires Git to function Comes with its own copy of git

Ownership
Open-source community;
(Maintained by the Linux
Foundation)

Owned by Microsoft Owned by Microsoft

Internet Requirement Works offline Requires internet connection Requires internet connection

Primary Function Version control and code
management

Repository hosting and
collaboration Help manage git/GitHub repos

Access Local machine only Accessible from anywhere Local machine only

Features Basic version control operations Additional features like issue
tracking, pull requests, wikis Most features of git & GitHub

Security Local authentication Two-factor authentication,
access control Connects to GitHub account

What is git?
It’s manual

verson control

• Allows manual snapshotting of directory
• like Time Machine, Dropbox, Google

Docs, but not automatic
• Works locally (i.e. does not upload to

anywhere on the internet)
• A hidden folder (.git) tracks changes, not

copies
• Works line by line

initial commit commit 2 commit 3

Changing file
names is not

version control



“notFinal.doc” by Jorge Cham, https://www.phdcomics.com

https://www.phdcomics.com/

Why use git
over Google
Drive, Word,

etc?

• Records all changes and who made them
• compare to track changes in Word after you’ve

“accepted changes”
• You have control over snapshots
• You can experiment with different versions while

keeping a working version intact
• Will never accidentally erase something.
• You can time travel across different versions of

your files

Summary of
use cases

• Version control
• Collaboration
• Publication

xkcd.com

Staging areaWorking directory .git directory

Stage file (git add)

Commit (git commit -m “message”)

Retrieve saved version (git checkout or git restore)

Staging
area

Working
directory

.git
directory

Stage

Commit

Checkout

Local repo Remote
Your_name/repo-

name

Backup to remote (git push)

Retrieve from remote (git pull)

git on your local machine GitHub on remote servers

First steps
• Create a GitHub account

• Download and install GitHub Desktop

• Link GitHub Desktop to your account

• You should see something like this ->

• Click “Create a New Repository”

Creating your first repo
• Makes a new folder AKA repo

• No spaces in repo name

• MIT license: Anyone can use
(including commercially) as long as
credit is given

• GNU GPLv3: Anyone can use
(including commercially) as long as
credit is given and changes are
record. No proprietary uses.

not staged

staged

modified

new files

commit
message

commit button

 = file is staged
and ready to be
committed

undo commits that haven’t been pushed/uploaded

Push/upload all
commits to
GitHub

What to upload
What to include What NOT to include

• Scripts
• Notebooks
• READMEs
• Configuration files (yamls, config

files)
• Metadata files (maybe)

• Data
• Software (conda envs, containers)
• Files >50 MB
• Passwords and sensitive information

(!!!)
• Log files (slurm logs, error logs, etc)
• Junk files (temp, OS-generated junk)

git terminology
Term Definition

repository (repo) a folder tracked by git

remote a repository hosted on a server (e.g. GitHub)

add/stage add file to staging area (start tracking it), a checkbox in GH Desktop

staging area intermediate area where files are tracked before they are added to git

commit make a snapshot of staging area to repository with commit message

push upload changes to remote repo (GitHub)

gitignore a file called “.gitignore” that lists files to be ignored by git and GH desktop

README a top level file called “README.md” that appears on your repo landing page

license needed upon publication to tell others how to use your code

How to organize for reproduction vs reuse
Reproduction (analysis):
Examples here and here
• Provide installation instructions for the software

dependencies
• GitHub README should provide links or

instructions for downloading raw or
intermediate data, link to paper, describe folder
structure

• Folder organization based on Data, Metadata,
Analysis, etc.

• Organize your code in the order that it was run
for your paper

• Label each script with a number or put them
into folders marking different aspects of your
analysis

• Add readme files or notebooks to each level

Reuse (software):
Example here
• Provide installation instructions for the software

dependencies
• GitHub README should be comprehensive and

tell you what the inputs and outputs are, and
what each parameter means

• Folder structure is different and split based on
configuration, dependencies, modules, scripts,
etc.

• Provide a small test dataset to demonstrate
program andd check that it is running properly.

• Write a documentation page if it's a larger
project

• Remove hard-coded or personalized parameters
as much as possible

https://zenodo.org/records/10236681
https://zenodo.org/records/10155524
https://github.com/dalmolingroup/euryale

Version DBVersion DB

Version DB

Commit 1

Commit 2

Personal Computer

Commit 1

Commit 2

Commit 3

Cluster Computer

Commit 1

Commit 2

GitHub Remote

File(s) File(s)

1. git commit

Version DBVersion DB

Version DB

Commit 1

Commit 2

Personal Computer

Commit 1

Commit 2

Commit 3

Cluster Computer

Commit 1

Commit 2

Commit 3

GitHub Remote

File(s) File(s)

1. git commit

2. git push

Version DBVersion DB

Version DB

Commit 1

Commit 2

Commit 3

Personal Computer

Commit 1

Commit 2

Commit 3

Cluster Computer

Commit 1

Commit 2

Commit 3

GitHub Remote

File(s) File(s)
3. git pull

1. git commit

2. git push

Version DBVersion DB

Version DB

Commit 1

Commit 2

Commit 3

Personal Computer

Commit 1

Commit 2

Commit 3

Cluster Computer

Commit 1

Commit 2

Commit 3

GitHub Remote

File(s) File(s)
3. git pull

1. git commit

2. git push

Start day
1. Pull changes
2. Make commits
3. Push changes

merging conflicts

Edits to different lines:
no conflict, automatically merge

Edits to the same line:
conflict, cannot merge

Git takeaways

1. Commits are NOT automatic. You have to tell git when
and what to commit every time. So do it frequently, or you
won't be able to go back to a version that you didn't
commit.

2. Always pull to get the latest changes from the remote
before you start working on your local version. Again, git
does NOT operate automatically at all. Everything is
manual.

3. Always be aware of what you're committing as
permanently deleting things is annoying

4. Everything is recorded and almost everything can be
undone, so don’t be afraid

Getting a DOI and archiving your code

Summary

4 steps to sharing your code

1. Decide if you are sharing for reuse or
reproduction

2. Write your READMEs and organize your
folders

3. Upload to GitHub
4. Link to Zenodo

Bonus topics
Pick one!

1. git branching & merging
2. collaboration (forking and pull requests)
3. GitHub pages
4. GitHub lab organization

git branching explanation

visual demo of branching

• Demo on learngitbranching : https://learngitbranching.js.org/

• git branch bugfix

• git commit

• git switch main

• git commit

• git merge bugFix

• git branch -d bugFix

https://learngitbranching.js.org/?NODEMO

c1 c2 c3main

git commit
git commit
git commit

Navigating your git history: the HEAD pointer

c1 c2 c3

c4 c5

main

test

git commit
git commit
git commit
git branch test
git commit
git commit

c1 c2 c3

c4 c5

main

test

git commit
git commit
git commit
git branch test
git commit
git commit
git switch main

c1 c2 c3

c4 c5

c6 c7main

test

git commit
git commit
git commit
git branch test
git commit
git commit
git switch main
git merge test
git commit

collaboration (forking and pull requests)

Remote
Your_name/repo-

name

Remote
collab/repo-name Make copy to account (fork)

Update original repo
(pull request)

Copy to your local
computer (git
clone)

Local repo

Version DB

Version DB

Version DB

Version DB

Commit 1

Commit 2

Commit 3

Personal Computer

Commit 1

Commit 2

Commit 3

Cluster Computer

Commit 1

Commit 2

Commit 3

GitHub Remote
(your fork)

Commit 1

Commit 2

Original Repo
(lab repo)

File(s) File(s)

Original
Informatics/github

-intro

Remote fork
Your_name/github

-intro
Local

~/path/github-
intro

1. Fork

2. clone

4-5. add,
commit

6. push

7-8. pull request
merge

9. sync

9. pull

https://github.com/harvardinformatics/github-intro

GitHub Pages: a website for your repo

GitHub Website

Website walkthrough

• Your repo will be found at
www.github.com/Your_name/repo-name

• <> Code is your landing page
• Settings for repo-specific preferences

• go to “Danger Zone” to change visibility
• README.md will render on your landing page

GitHub
Organizations

Create a lab organization

• Your data belongs to Harvard, which
needs to archive for 7 years

• Transfer ownership of your repository to
your lab

• Easier to pass on project for others to
manage

• Example: https://github.com/schlosslab

https://github.com/schlosslab

	Slide 1: git/GitHub Introduction
	Slide 2: We help FAS researchers with bioinformatic analysis
	Slide 3: Specialized Services
	Slide 4: “Data available upon request” is no longer acceptable, shouldn’t it be the same for code?
	Slide 5: Your code is part of your methods: what you include matters
	Slide 6: Two types of sharing code: for reproduction and for reuse
	Slide 7
	Slide 8: What is git? It’s manual verson control
	Slide 9: Changing file names is not version control
	Slide 10: Why use git over Google Drive, Word, etc?
	Slide 11: Summary of use cases
	Slide 12
	Slide 13
	Slide 14: First steps
	Slide 15: Creating your first repo
	Slide 17
	Slide 18
	Slide 19: What to upload
	Slide 20: git terminology
	Slide 21: How to organize for reproduction vs reuse
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: merging conflicts
	Slide 27: Git takeaways
	Slide 28: Getting a DOI and archiving your code
	Slide 29: Summary
	Slide 30: Bonus topics Pick one!
	Slide 31: git branching explanation
	Slide 32: visual demo of branching
	Slide 33: Navigating your git history: the HEAD pointer
	Slide 34
	Slide 35
	Slide 36
	Slide 37: collaboration (forking and pull requests)
	Slide 38
	Slide 39
	Slide 40
	Slide 41: GitHub Pages: a website for your repo
	Slide 42: GitHub Website
	Slide 43: GitHub Organizations

