Lei Ma, PhD
Informatics Group

git/GitHub Introduction

Gregg Thomas, PhD
Informatics Group

We help FAS researchers with bioinformatic
analysis

ONE-ON-ONE ONGOING BIOINFORMATICS
CONSULTS COLLABORATIONS WORKSHOPS

informatics.fas.harvard.edu

Specialized Services

DATA CONCIERGE OFFICE HOURS NEWSLETTER

informatics.fas.harvard.edu

“Data available
upon request” is
no longer
acceptable,
shouldn’t it be
the same for

code”?

We annotated the aligned sRNAs using our in-house annotation pipeline (sourcercoderavailable
upomrequest). The annotations were then resolved hierarchically with the following categories

interrogation high-resolution 3D particle data sets. We describe an efficient algorithm for

performing a volume reconstruction of the lithology field defined via particles (code
availablesuponrequestifromithesauthor)s The algorithm generates an Approximate

Don’tdo this!

Your code is part
of your methods:
what you include

matters

“A differential abundance analysis was conducted using the Wilcoxon Rank
Sum Test...These analyses were performed using the R statistical program.”

? Did they code their own or use a software?
? What parameters were given?
? What data cleaning was done beforehand?

“Maaslin2 (version 1.14.1) [32] was used for differential abundance
analysis on a rarefied dataset with TSS normalization, prevalence set to
15%, and cage household set as a random effect.”

Software and version are listed and cited

Parameters and data cleaning/normalization are listed
Could recreate if we read the tutorial for Maaslin2, maybe
? Not all parameters are listed, some are assumed

?Ta kes a lot of effort to recreate

https://onlinelibrary.wiley.com/doi/10.1111/gbb.70012#gbb70012-bib-0032

Code shared for reproduction

Data and materials availability: Raw sequencing reads are available from the NCBI
BioProject database (PRJNA814281 and PRJNA979973). Processed data are available

Two types of

Sha Fi ng Code: for Link to paper by.AleJandro Couceetal, Smenge 2024 (?ha’r)glng fitness
effects of mutations through long-term bacterial evolution

reproduction and

for reuse

Code shared forreuse

EURYALE is available through a GitHub repository, which can be found at https://github.com/
dalmolingroup/euryale, with documentation available through https://dalmolingroup.github.io/
euryale/. MicroView, although executed as part of EURYALE, can be executed stand-alone and has its
own source code available in the following repository: https://github.com/dalmolingroup/microview.

Link to paper by Cavalcante et al, IEEE 2024 “EURYALE: A versatile
Nextflow pipeline for taxonomic classification and functional
annotation of metagenomics data”

https://www.science.org/doi/10.1126/science.add1417
http://doi.org/10.1109/CIBCB58642.2024.10702116

Feature

Type

Installation

Cost

Dependency

Ownership

Internet Requirement

Primary Function

Access

Features

Security

Q) git

Local version control software

Downloaded and installed
locally

Free and open-source

Can work independently

Open-source community;
(Maintained by the Linux
Foundation)

Works offline

Version control and code
management

Local machine only

Basic version control operations

Local authentication

GitHub @

Cloud-based hosting service

Web-based, no installation
needed

Free and paid tiers available

Requires Git to function
Owned by Microsoft

Requires internet connection

Repository hosting and
collaboration

Accessible from anywhere

Additional features like issue
tracking, pull requests, wikis

Two-factor authentication,
access control

GitHub Desktop

Software to help manage GitHub
repositories with a user interface

Downloaded and installed locally

Free

Comes with its own copy of git

Owned by Microsoft

Requires internet connection

Help manage git/GitHub repos

Local machine only

Most features of git & GitHub

Connects to GitHub account

initial commit commit 2 commit 3

What is git? * Allows manual snapshotting of directory
It’s manual * like Time Machine, Dropbox, Google

verson control Docs, but not automatic
* Works locally (i.e. does not upload to
anywhere on the internet)
A hidden folder (.git) tracks changes, not
copies
* Works line by line

< 2017 MbnBC (Science) 88

2017 MbnBC (Science)

Name

R,

&) 20170525_MbnBC_draft2_ld.docx

ﬂ 20170525_MbnBC_draft2_|dgk_acr.docx

va 20170525_MbnBC_draft2_|dgk.docx

) 20170525_MbnBC_draft2_temp.docx

) 20170525_MbnBC_draft2.docx

) 20170525_MbnBC_draft3 Kopie.docx 6/2/17,18:15

“ ,' 8 20170525_MbnBC_draft3.docx 6/2/17,18:18

#) 20170526_MbnBC_draftd.docx 6/14/17, 07:01

E lNAL. doc &) 20170525_MbnBC_draft5.docx 614117, 19:14

) 20170614_MbnBC_draft5.docx 1

‘ﬂ 20170614_MbnBC_draft6.docx

) 20170614_MbnBC_draft6acr_ld_gk.docx

) 20170614_MbnBC_draft6acr_ld.docx

) 20170614_MbnBC_draft7 Kopie.docx ®
) 20170614_MbnBC_draft7_ld2.docx 7/23/17, 23:45
) 20170614_MbnBC_draft7.docx 7/20/17, 20:41

@) 20170722_MbnBC_draft7_for-nk_CJD_Edit.docx
) 20170722_MbnBC_draft7_for-nk_v2_PMT.docx
a 20170722_MbnBC_draft7_for-nk.docx 7/23/17, 22:41
@ 20170722_MbnBC_draft7_for-sa.docx 7/23/17, 22:46
&) 20170722_MbnBC_draft8 ck.doex I

) 20170722_MbnBC_draft8 ckid.docx

) 20170722_MbnBC_draft8 RIM-1.docx

%) 20170722_MbnBC_draft8 RJM.docx

@ 20170722_MbnBC_draft8_unformat-cites.docx

B 20170722_MbnBC_jmb_advice.docx

a 20170805_MbnBC_draft9_unformat-cites_rough.docx

Changing file

® 20170805_MbnBC_draft10_unformat-cites_gk.docx 8/13/17, 11:34
20170813_MbnBC_draft10-cites_gk.docx 8/13/17,12:30
20170813_MbnBC_draft10-unformat-cites_gk.docx 8/16/17, 42
20170816_MbnBC_draft10-cites_gk.docx 8/16/17, 22:44
20170817_MbnBC_draft11_jmb.doex 8/17/17, 16:57

20170817_MbnBC_draft11_RJM.docx 8/18/17, 18:52
20170817_MbnBC_draft12_cites_unformat.docx 8f2

version control

/"
WNAL _rev.6.COMME .d FINAL _rev.8.commeni:
FINAL _rev.6.COMMENTS. doc A th gl

20170817_MbnBC_draft12_cites.docx
20170823_MbnBC_draft12_cites_acr.docx
20170823_MbnBC_draft12_cites_acr2.docx

8/23/17, 21:07
8/30/17, 17:46
9/4N7, 23:01

20170823_MbnBC_draft12_cites.docx 8/ 7, 21-

20170903_MbnBC_draft13_cites_acr.docx 9/5/17, 15:47
frack changes 20170903_MbnBC_draft13_cites_gk.docx 9/5/17, 12:54
£ 20170903_MbnBC_draft13_uncites_gk.docx 9/5/17, 03:56

20170910_MbnBC_final_gk.docx
20170910_MbnBC_final_gkacr.doex

18

20171230_response_draft1.docx 1318, 02:41

20180103_MbnBC_response_draft2.docx , 22:29

20180103_MbnBC_rev_draft1_cites.docx 1/3118, 22:28

20180103_MbnBC_rev_draft]_uncites.docx /318, 23:04

'Q) 20180103_MbnBC_rev_draftl.docx /318, 18:55

20180104_MbnBC_response.docx 1/818, 00:12

FINAL_.\’QV.{ 8.C0mm8ﬂr$?. F(NAL__reV.zz. commen q 20180104_MbnBC_revised ck text only.docx 1/8/18, 16:12

20180104_MbnBC_revised Kopie.docx
20180104_MbnBC_revised-jmb.docx

corrections?.MORE.30.dot ¢orrections. 10, #@$HLWHYDL

PRRPRRPRRRRPRRRRRRRRRRRPRRRRRRE PP

ICOMETOGRADSCHOOL?22?, 20180104_MbnBC_revised.docx 1/6/18, 23:00
20180108_MbnBC_respanse_gk.docx /818, 16:13
20180108_MbnBC_revised_gk.docx /8118, 16:08
WwWwW.PHDCOMICS. COM i 2ap9437_ArticleContent_v2.docx 12/19/17, 06:36
a ghssein-for-length-comparison.docx 9/13/16, 20:38
a MbnBC_coverletter2_|d.docx 17, 18:38
@) MbnBC_coverletter2_|dgk.docx 7[24/17, 19:17
tFinal.doc” by Jorge Cham, https://www.phdcomi) CEERETIAES: ’
) MbnBC_draft_Einstein_v2.docx 7[77, 19:36
) MbnBC_draft_Kelleher_v3_PMT.docx 6/20/17, 02:31

) MbnBC_draft_PSU ck jmb ck.docx 7/
) MbnBC_draft_PSU ck jmb.docx
&) MbnBC_DraftMossSection ck.docx

[13/17, 23:56
17, 13:32
17, 15:16

https://www.phdcomics.com/

Why use git
over Google
Drive, Word,

etc”?

Records all changes and who made them

 compare to track changes in Word after you’ve
“accepted changes”

You have control over snapshots

You can experiment with different versions while

keeping a working version intact

Will never accidentally erase something.

You can time travel across different versions of

your files

Summary of

USe CaSES

e Version control
e Collaboration
e Publication

THIS15 GIT. IT TRACKS COLLABORATIVE. LJORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE MODEL.

{ COOL. HOW DO LE.USE IT7

NO IDEA. JUST MEMORIZE THESE SHELL
COMMANDS AND TYPE. THEM To SYNC UP
IF YOU GET ERRORS, SAVE YOUR LIORK
ELSEWHERE, DELETE THE PROJECT
AND DOUNLOAD A FRESH COPY.

\

T4l]

xkecd.com

Stage file (git add)

Commit (git commit -m “message”)

Retrieve saved version (git checkout or git restore)

Local repo
Backup to remote (git push) Remote

- - - Your_name/repo-
Work S .git —

)
—TTE—

Stage

Retrieve from remote (git pull)

git on your local machine GitHub on remote servers

First steps

Create a GitHub account

Download and install GitHub Desktop
Link GitHub Desktop to your account
You should see something like this ->

Click “Create a New Repository”

Let's get started!

Add a repository to GitHub Desktop to start collaborating

8 Create a Tutorial Repository...

;'E Clone a Repository from the Internet...

-|- Create a New Repository on your Hard Drive...

. Add an Existing Repository from your Hard Drive...

Creating your first repo

Makes a new folder AKA repo
No spaces inrepo name

MIT license: Anyone can use
(including commercially) as long as
credit is given

GNU GPLv3: Anyone can use
(including commercially) as long as
credit is given and changes are
record. No proprietary uses.

[git—workshop J

Description

[This will hold the code for my paper titled "Awesome Paper"]

Local Path

[IUsersteimajGithub] [Choose...]

Initialize this repository with a README

Git Ignore

None J

License

None J

|;| Current Repository 4 Current Branch Publish repository
git-workshop main Publish this repository to GitHub
Changes 15 History README.md @' (]
= 15 changed files @e -1,2 +1,3 @@
1 1 # git-workshop
data_raw/README.md
environment.ym +
i |
Staged figures/figure_1_flipper_bill.png + This is a repository for my paper titled "Awesome paper"
Palmer_penguins.Rproj new files
not Staged ﬁ (] penguins_notebook.md
public_notebook.nb.html
public_notebook.Rmd

¥ README.md [h modified
scripts/figure_1_flipper_bill.R
scripts/process_data.R

N—

:-:-: [Summary (required)

Description

Commit to main
Committed 42 minutes ago -
Undo
Initial commit -

commit
message

ﬁ

|;| Current Repository
git-workshop

Changes 15 History
= 15 changed files
data_raw/README.md
environment.yml
figures/figure_1_flipper_bill.png
Palmer_penguins.Rproj
(] penguins_notebook.md
public_notebook.nb.html
public_notebook.Rmd

0]

v README.md

scripts/figure_1_flipper_bill.R

®H ®

scripts/process_data.R

:-:-: [Summary (required)

N—

Description

Committed 42 minutes ago
Initial commit

<
<

3_9 Current Branch
main

Publish repository
Publish this repository to GitHub

README.md

@ee -1,2 +1,3 @@
git-workshop
2

£l + This is a repository for my paper ti

v

<

"Awesome paper"

— 1 =file is staged
and ready to be

committed Push/upload all

commits to
GitHub

\

—

@ ndo commits that haven’t been pushed/uploaded

commit button

What to upload

What to include What NOT to include

* Scripts * Data

* Notebooks e Software (conda envs, containers)

* READMEs * Files >50 MB

* Configuration files (yamls, config * Passwords and sensitive information
files) (1)

 Metadata files (maybe) * Log files (slurm logs, error logs, etc)

e Junk files (temp, OS-generated junk)

git terminology

repository (repo)
remote
add/stage
staging area
commit

push

gitignore
README

license

a folder tracked by git

a repository hosted on a server (e.g. GitHub)

add file to staging area (start tracking it), a checkbox in GH Desktop
intermediate area where files are tracked before they are added to git

make a snapshot of staging area to repository with commit message
upload changes to remote repo (GitHub)

a file called “.gitignore” that lists files to be ighored by git and GH desktop

a top level file called “README.md” that appears on your repo landing page

needed upon publication to tell others how to use your code

How to organize for reproduction vs reuse

Reproduction (analysis):

Examples here and here

Provide installation instructions for the software
dependencies

GitHub README should provide links or
instructions for downloading raw or
intermediate data, link to paper, describe folder
structure

Folder organization based on Data, Metadata,
Analysis, etc.

Organize your code in the order that it was run
for your paper

Label each script with a number or put them
into folders marking different aspects of your
analysis

Add readme files or notebooks to each level

Reuse (software):

Example here

Provide installation instructions for the software
dependencies

GitHub README should be comprehensive and
tell you what the inputs and outputs are, and
what each parameter means

Folder structure is different and split based on
configuration, dependencies, modules, scripts,
etc.

Provide a small test dataset to demonstrate
program andd check that it is running properly.

Write a documentation page if it's a larger
project

Remove hard-coded or personalized parameters
as much as possible

https://zenodo.org/records/10236681
https://zenodo.org/records/10155524
https://github.com/dalmolingroup/euryale

GitHub Remote

Version DB

/\

Personal Computer Cluster Computer

File(s) File(s)

Version DB Version DB 1. git commit

Commit3

Commit2

Commit 1

GitHub Remote

Version DB

Commit3

/\2' git push

Personal Computer Cluster Computer

File(s) File(s)

Version DB Version DB 1 git commit

Commit3

Commit2

3. git pull

GitHub Remote

Version DB

Commit3

/\2' git push

Personal Computer

File(s)

Version DB

Commit3

Cluster Computer

File(s)

Version DB

Commit3

Commit2

1. git commit

3. git pull

GitHub Remote

Version DB

Commit3

Commit 2

Start day

1. Pull changes
2. Make commits
3. Push changes

/\2' git push

Personal Computer

File(s)

Version DB

Commit3

Cluster Computer

File(s)

Version DB

Commit3

Commit2

Commit 1

1. git commit

merging conflicts

Edits to different lines:
no conflict, automatically merge

Edits to the same line:
conflict, cannot merge

Git takeaways

1. Commits are NOT automatic. You have to tell git when
and what to commit every time. So do it frequently, or you
won't be able to go back to a version that you didn't
commit.

2. Always pull to get the latest changes from the remote
before you start working on your local version. Again, git
does NOT operate automatically at all. Everything is
manual.

3. Always be aware of what you're committing as
permanently deleting things is annoying

4. Everything is recorded and almost everything can be
undone, so don’t be afraid

Getting a DOI and archiving your code

My account

Settings () GitHub Repositories (updated amonth ago) | & Sync now

8 Profile

&P Change password O Get Stal’ted

A Notifications

1 Flip the switch 2 Create a release 3 Get the badge
© Security
@& Linked accounts

Select the repository you want to preserve, Go to GitHub and create a release [. After your first release, a DOI badge that
& Applications and toggle the switch below to turn on Zenodo will automatically download a .zip- you can include in GitHub README wiill

automatic preservation of your software. ball of each new release and register a DOI. appear next to your repository below.

0 GitHub
W (example) DOI 10.5281/zenodo.8475 R CutLD)

4 steps to sharing your code

1. Decide if you are sharing for reuse or
reproduction

2. Write your READMEs and organize your
folders

Summary 3. Upload to GitHub
4. Link to Zenodo

1. git branching & merging

2. collaboration (forking and pull requests)
3. GitHub pages

Bonus topics 4. GitHub lab organization

Pick one!

git branching explanation

visual demo of branching

* Demo on

 git branch bugfix

* git commit

e git switch main

* git commit

* git merge bugFix

* git branch -d bugFix

: https://learngitbranching.js.org/

https://learngitbranching.js.org/?NODEMO

Navigating your git history: the HEAD pointer

A\

main JL - a2

git commit
git commit
git commit

git commit
git commit
git commit
git branch test
git commit
git commit

git commit
git commit
git commit
git branch test
git commit
git commit
git switch main

git commit
git commit
git commit
git branch test
git commit

git commit

git switch main
git merge test

git commit

collaboration (forking and pull requests)

Remote
collab/repo-name

Make copy to account (fork)

Update original repo
(pull request)

Local repo

Remote
Your_name/repo-
name

Copy to your local
computer (git
clone)

Original Repo
(lab repo)
Version DB

GitHub Remote
(your fork)

Version DB

Commit3

Commit 2

/\

Personal Computer

File(s)

Version DB

Commit3

Cluster Computer

File(s)

Version DB

Commit3

Commit2

Commit 1

Original
Informatics/github

-intro
1. Fork
7-8. pull request Remote fork
merge .
g Your_name/github
9. sync -intro

2. clone
6. push

9. pull

https://github.com/harvardinformatics/github-intro

4-5. add,
commit

Local
~/path/github-
intro

GitHub Pages: a website for your repo

<> Code () Issues 11 Pullrequests () Actions [Projects [J wiki @ Security |~ Insights 2 Settings

£ General GitHub Pages

Access GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

A% Collaborators

Build and deployment
Code and automation Source
¥ Branches Deploy from a branch ~
© Tags
Branch
E+ Rules b GitHub Pages is currently disabled. Select a source below to enable GitHub Pages for this repository. Learn more
® Actions o about configuring the publishing source for your site.
& Webhooks ¥ main ~ @8 / (root) ~ Save

Environments

V|S|b|||ty (GitHub Enterprise>

With a GitHub Enterprise account, you can restrict access to your GitHub Pages site by publishing it privately. You can

l EJ Pages use privately published sites to share your internal documentation or knowledge base with members of your
enterprise. You can try GitHub Enterprise risk-free for 30 days. Learn more about the visibility of your GitHub Pages

2 Codespaces

Website walkthrough

* Yourrepo will be found at
www.github.com/Your_name/repo-name

* <>(Codeisyourlanding page

« { Settings for repo-specific preferences

. : goto“DangerZone” to change visibility

GitHub Website + README.md will render on your landing page

Create a lab organization

* Your data belongs to Harvard, which
needs to archive for 7 years
* Transfer ownership of your repository to
GitHub your lab
Organizations * Easier to pass on project for others to
manage
* Example: https://github.com/schlosslab

https://github.com/schlosslab

	Slide 1: git/GitHub Introduction
	Slide 2: We help FAS researchers with bioinformatic analysis
	Slide 3: Specialized Services
	Slide 4: “Data available upon request” is no longer acceptable, shouldn’t it be the same for code?
	Slide 5: Your code is part of your methods: what you include matters
	Slide 6: Two types of sharing code: for reproduction and for reuse
	Slide 7
	Slide 8: What is git? It’s manual verson control
	Slide 9: Changing file names is not version control
	Slide 10: Why use git over Google Drive, Word, etc?
	Slide 11: Summary of use cases
	Slide 12
	Slide 13
	Slide 14: First steps
	Slide 15: Creating your first repo
	Slide 17
	Slide 18
	Slide 19: What to upload
	Slide 20: git terminology
	Slide 21: How to organize for reproduction vs reuse
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: merging conflicts
	Slide 27: Git takeaways
	Slide 28: Getting a DOI and archiving your code
	Slide 29: Summary
	Slide 30: Bonus topics Pick one!
	Slide 31: git branching explanation
	Slide 32: visual demo of branching
	Slide 33: Navigating your git history: the HEAD pointer
	Slide 34
	Slide 35
	Slide 36
	Slide 37: collaboration (forking and pull requests)
	Slide 38
	Slide 39
	Slide 40
	Slide 41: GitHub Pages: a website for your repo
	Slide 42: GitHub Website
	Slide 43: GitHub Organizations

