
Healthy Habits for Data 
Science

Day 3: Version control with git/GitHub



Staging areaWorking directory .git directory

Stage file (git add)

Commit (git commit -m “message”)

Retrieve saved version (git checkout or git revert)



Staging areaWorking 
directory

.git 
directory

Stage

Commit

Checkout

Local repo Remote
Your_name/repo-

name

Backup to remote (git push)

Retrieve from remote (git pull)



Version database

Version database

Version database

Version database

Commit 1

Commit 2

Commit 3

Personal Computer

Commit 1

Commit 2

Commit 3

Cluster Computer

Commit 1

Commit 2

Commit 3

GitHub Remote
(your fork)

Commit 1

Commit 2

Repo you forked

File(s) File(s)



https://github.com/harvardinformatics/github-intro



Original
Informatics/github-

intro

Remote fork
Your_name/github-

intro
Local

~/path/github-
intro

1. Fork

2. clone

4-5. add, 
commit

6. push

7-8. pull request
merge

9. sync

9. pull

github-intro part 1



c1main

haiku-test

2. a
dd empty 

haiku
.m

d

c2

3. c
hecko

ut -

b haiku
-te

st

4-5. a
dd 

haiku
 lin

es

c3

7. a
dd haiku

 

lin
e6. c

hecko
ut 

main
8-9. p

ull 

request,
 

merge
,

reso
lve

 

co
nflic

t

github-intro part 2

Remote fork
push/pull



Term Definition

repository (repo) a folder tracked by git

fork copy someone else’s GitHub repo into your own account

clone copy a repo from a remote onto your local computer

add add file to staging area (start tracking it)

commit make a snapshot of staging area to repository

push upload changes to remote repo

remote a repository hosted on a server (e.g. GitHub)

staging area intermediate area where files are tracked before they are added to git

pull fetch changes from a remote and merge into existing branch

branch an isolated development path that was diverted from the main line at a specific commit

status check the status of your git repo



Here's what you should use git for:
• Scripts
• Notebooks
• READMEs
• Configuration files (yamls, config 

files)

Here's what you should NOT use git 
for:
• Data
• Software (conda envs, containers)
• Non-plaintext files (pdfs, images, 

videos, binary files)
• Large files
• Passwords and sensitive 

information (!!!)
• Log files (slurm logs, error logs, 

etc)
• Junk files (temp, OS-generated 

junk)



c1 c2 c3main

HEAD

git commit
git commit
git commit



c1 c2 c3

c4 c5

main

test

HEAD git commit
git commit
git commit
git checkout -b test
git commit
git commit



c1 c2 c3

c4 c5

main

test

HEAD

git commit
git commit
git commit
git checkout -b test
git commit
git commit
git checkout main



c1 c2 c3

c4 c5

c6 c7main

test

HEAD

git commit
git commit
git commit
git checkout -b test
git commit
git commit
git checkout main
git merge test
git commit



git checkout

1. git checkout -b new-branch
2. git checkout d510fh01
3. git checkout HEAD^
4. git checkout main
5. git checkout d510fh01 

some_file

1. make a new branch and point HEAD to it
2. point head to commit d510fh01
3. points head to previous commit
4. points head to latest commit of branch 

main
5. points head to commit d510fh01 but only 

for some_file

c1 c2 c3 c6 c7main

HEAD

HEAD^

HEAD~2

c5c4



git revert

1. git revert d510fh01
2. git revert HEAD 

1. make a new commit that reverts commit 
d510fh01

2. reverts the latest commit

c1 c2 c3 c6 c7c5c4



git reset

1. git reset d510fh01
2. git reset HEAD
3. git reset --hard d510fh01

1. undo commits since d510fh01, does not 
change your working directory

2. unstage everything to previous commit
3. undo commits since d510fh01, including 

your working directory

c1 c2 c3 X XXc4



advanced git vocab/concepts

Term Definition

HEAD Pointer to current location in your repository, typicall 
latest commit

checkout Switch your working directory to a different commit or 
branch, by moving the HEAD

revert Undo a specific commit and make a new commit

reset Rewrite commit history since a specific commit

diff See differences between staged/commited and 
working directory file

log see all commit history

reflog see all git command history (that made changes)



Main git takeaways

• Commits are NOT automatic, commit often
• Always pull and keep your local up to date with your remote
• NEVER add sensitive information to git
• Everything is recorded and almost everything can be undone, so don’t 

be afraid
• Do your development on a separate branch


