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Day 3: Version control with git/GitHub
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https://github.com/harvardinformatics/github-intro
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Term Definition

repository (repo) a folder tracked by git

fork copy someone else’s GitHub repo into your own account

clone copy a repo from a remote onto your local computer

add add file to staging area (start tracking it)

commit make a snapshot of staging area to repository

push upload changes to remote repo

remote a repository hosted on a server (e.g. GitHub)

staging area intermediate area where files are tracked before they are added to git

pull fetch changes from a remote and merge into existing branch

branch an isolated development path that was diverted from the main line at a specific commit

status check the status of your git repo



Here's what you should use git for:
• Scripts
• Notebooks
• READMEs
• Configuration files (yamls, config 

files)

Here's what you should NOT use git 
for:
• Data
• Software (conda envs, containers)
• Non-plaintext files (pdfs, images, 

videos, binary files)
• Large files
• Passwords and sensitive 

information (!!!)
• Log files (slurm logs, error logs, 

etc)
• Junk files (temp, OS-generated 

junk)
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git checkout

1. git checkout -b new-branch
2. git checkout d510fh01
3. git checkout HEAD^
4. git checkout main
5. git checkout d510fh01 

some_file

1. make a new branch and point HEAD to it
2. point head to commit d510fh01
3. points head to previous commit
4. points head to latest commit of branch 

main
5. points head to commit d510fh01 but only 

for some_file

c1 c2 c3 c6 c7main

HEAD

HEAD^

HEAD~2

c5c4



git revert

1. git revert d510fh01
2. git revert HEAD 

1. make a new commit that reverts commit 
d510fh01

2. reverts the latest commit

c1 c2 c3 c6 c7c5c4



git reset

1. git reset d510fh01
2. git reset HEAD
3. git reset --hard d510fh01

1. undo commits since d510fh01, does not 
change your working directory

2. unstage everything to previous commit
3. undo commits since d510fh01, including 

your working directory

c1 c2 c3 X XXc4



advanced git vocab/concepts

Term Definition

HEAD Pointer to current location in your repository, typicall 
latest commit

checkout Switch your working directory to a different commit or 
branch, by moving the HEAD

revert Undo a specific commit and make a new commit

reset Rewrite commit history since a specific commit

diff See differences between staged/commited and 
working directory file

log see all commit history

reflog see all git command history (that made changes)



Main git takeaways

• Commits are NOT automatic, commit often
• Always pull and keep your local up to date with your remote
• NEVER add sensitive information to git
• Everything is recorded and almost everything can be undone, so don’t 

be afraid
• Do your development on a separate branch


